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Chapter 1 

Introduction 

 

It is somewhat widely to known to those in financial mathematics that the trinomial and finite 

difference methods of option pricing are equivalent. However, it is not so widely known exactly what 

that equivalence means, or how it can be demonstrated. The bulk of this project has been about 

understanding this equivalence and its implications. 

The other part of this project is about the implementation of these methods. This was done in C++, 

and enabled the exploration of variant methods, and how to optimise the calculation. 

Many details included in this report are already known to those familiar with mathematical finance. 

They are included to make this report as widely accessible as possible, with the goal of being readily 

understood at the undergraduate level. 
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Chapter 2 

Background 

 

2.1 | Options 

An option is an entitlement to engage in a particular transaction, but not an obligation to engage in 

that transaction. Thus the option’s owner has the ‘option’ of engaging in the transaction. More 

specifically, taking the simplest relevant case, a European style call option entitles its owner to buy a 

particular asset (the underlying) at a particular price (the strike) at a particular time (the expiry 

date). 

For example, you might pay $400 for an option to buy 100 shares of BHP in 3 months’ time at $85 

each. After 3 months, if BHP is trading at $95, you can use the option to pay just $8500 to buy 100 

BHP shares. If you wish, you can immediately sell those shares for $9500, realising a gain of $1000; a 

profit of $600. However, after 3 months, if BHP is trading at $80 (or even $84.90) you will not wish 

use the option to buy it for $85. This is because you can just buy it from the market for $80, so your 

option expires worthless, and you just lose the $400 premium you paid. 

However, looking at options this way conceals their use in risk management. A business for example 

may need to purchase some commodity at a future date, and purchase an option on that 

commodity. Because the business plans to buy the commodity anyway, purchasing from the market 

if not via the option, the option is best understood as providing the business with a price ceiling. In 

this case, the business prefers the option to expire worthless. 

In addition to call options, there are put options. Put options are exactly like call options except that 

the optional transaction is to sell an asset instead of to buy an asset. In Chapter 12 of Basic 

Economics1, Thomas Sowell describes a hypothetical wheat farmer entering a futures contract to sell 

wheat he has not yet planted. A futures contract is like having an option, except that you have the 

obligation to engage in the transaction, not just the option to do so if you wish. The wheat farmer 

enters the futures contract to avoid the risk of the wheat price being low after harvest, as the 

contract locks in a price today. Alternatively, the farmer could invest in put options, and this would 

provide him with a price floor. 

Mathematically, options are understood in terms of payoff functions, often denoted     . If you 

own a European call option at expiry (   ) with strike price   and the underlying price   is greater 

than  , then you will exercise the option, buying at   and (if you like) selling at  . This amounts to a 

payoff of    . On the other hand, if the underlying price   is less than  , you will not exercise the 

option, which is a payoff of  . Combining these, the general payoff is            , or: 

                         - Eq 2.1.1 
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Fig 2.1.1 – Payoff function for a call option with a $40 strike price. 

Similarly, for put options the gain is realised if the underlying price   is below  , and the payoff is 

instead: 

                         - Eq 2.1.2 
 

 
Fig 2.1.2 – Payoff function for a put option with a $40 strike price. 

This provides the essential boundary condition (final condition) to use the trinomial and finite 

difference methods. In addition to European style options discussed so far, there are American style 

options, which allow the transaction to take place at any time until the expiry date, rather than on 

the expiry date. Mathematically, this imposes a lower limit on the value of an American option at all 

times, as the owner will exercise the option early if its value were to ever fall below the payoff 

function. For call options, it so happens that this is inconsequential, but for put options, it adds an 

additional boundary condition3: 
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                     - Eq 2.1.3 

 

      is called the “optimal exercise boundary”; the boundary below which you really should 

exercise early, and is defined by3: 

 
  

  
              - Eq 2.1.4 

 

This makes the location of the optimal exercise boundary part of the problem itself, creating a 

moving boundary problem. For the trinomial and finite difference methods, it is fairly trivial to 

incorporate this condition, but it makes the analytical solution far more difficult. However, it was 

solved by Zhu in 20052. 
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2.2 | The Black-Scholes Framework 

To price options, a model of how asset prices change over time is required. Of course, no one knows 

what the price of Google shares will be tomorrow, so the model is probabilistic. Asset prices are 

modelled by a stochastic equation: 

 
  

 
          - Eq 2.2.1 

 

Note:    is a sample from a normal distribution with mean zero and standard deviation    . 

This can be used to produce simulations like the one in figure 2.2.1. 

 
Fig 2.2.1 – A simulation of an asset price under the stochastic process in eq 2.2.1. 

The Black-Scholes equation is derived from this model. It is the partial differential equation we will 

use to derive finite difference methods: 

 
  

  
 
 

 
    

   

   
   

  

  
       - Eq 2.2.2 

 

The analytical solution to option pricing is found by transforming the Black-Scholes equation to the 

heat equation: 

 
  

  
  

   

   
  - Eq 2.2.3 

 

Using the final condition for call options (2.1.1) as well as a few other boundary conditions not 

required for the finite difference and trinomial methods, the solution is the Black-Scholes formula: 

                      
        - Eq 2.2.4 
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 - Eq 2.2.5 

    
    

 
 
     

 
 
        

     
 - Eq 2.2.6 

      
 

   
    

 
  

 

  

  - Eq 2.2.7 
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2.3 | Interpreting Substitution as Scaling 

Whenever substitution is used in algebraic manipulation, it can be interpreted instead as a scaling 

process. For example, suppose we have this equation approximating some population of bacteria: 

          - Eq 2.3.1 
 

Here   is the population of the culture and   is time in days. Figure 2.2.1 plots this trend. 

Fig 2.2.1 – Plot of the exponential growth phase of a hypothetical bacterial 

culture. 

Now, the population explosion makes it difficult to see the growth behaviour in the early stages. To 

make it more reasonable we perform the substitution: 

           - Eq 2.3.2 
 

Obtaining: 

            
             

    
          

   
                

 
 
 

- Eq 2.3.1 
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Figure 2.2.2 plots this relationship. 

Fig 2.2.2* – Plot of bacterial growth after substitution. 

However, this is not what we want. Instead, we’d like to re-interpret the  -axis as the  -axis again, 

only scaled. We do this by recognising equivalence between   values and   values. For example, 

when    ,          . All we have to do is replace   with   ,   with    ,   with      etc. 

making the vertical axis the   axis again, producing scaling instead of substitution. This is illustrated 

in figure 2.2.3. 

Fig 2.2.3 – The exponential growth phase of a bacterial culture under a 

logarithmic scale. 

 

  
                                                           
*
The title ‘???’ is intended to convey the lost understanding of what the plot means. 
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2.4 | Finite Differences 

Understanding finite differences is paramount to understanding how finite difference methods can 

be constructed as equal to trinomial methods. For this reason, and because this report should be 

accessible at the undergraduate level, this section has a fairly complete account of everything you 

need to know about finite differences to understand the equivalence. 

Finite differences are like doing calculus in reverse. Remember the definition of the derivative: 

          
    

            

  
  - Eq 2.4.1 

 

In calculus, we take this gradient in the limit of      as the derivative. With finite differences, we 

start with a derivative, pick a small but non-zero value for   , (or   , etc.) and use that gradient as 

an approximation to the derivative. These constructs are illustrated in figure 2.4.1. 

 
Fig 2.4.1 – Illustration of derivatives and finite differences. 

When applying finite differences, in addition to discretising derivatives, we discretise the functions 

involved, so that they are no longer continuous, instead consisting of a series of nodes. Nodes are 

separated by the step size(s) of the independent variable(s), and are indexed using integers. This is 

illustrated in figure 2.4.2. 
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Figure 2.4.2 – Finite difference methods discretise functions into series of nodes. 

With nodes like this setup, we expand differences of dependent variables to differences between 

adjacent nodes, e.g.: 

 
  

  
 
       

  
  - Eq 2.4.2 

 

If we have a differential equation, such as: 

 
  

  
       - Eq 2.4.3 

 

then we can tie this all together to use a finite difference method to approximate the function 

without analytically solving the differential equation: 

  

  
      

       
  

        

                   - Eq 2.4.4 
 

Note      , this comes from        . 

Just like in analytic solutions, we need    or some other boundary condition to determine the 

particular solution. So if we know   , and      for any  , we have our approximations for   ,   , 

etc. as: 
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     - Eq 2.4.5 

 

So far we have talked about only forward differences. There are also backward differences: 

 
  

  
 
       

  
  - Eq 2.4.6 

 

 
Fig 2.4.3 – A backward difference. 

In addition there are central differences: 

 
  

  
 
         

   
  - Eq 2.4.7 

 

 

Fig 2.4.4 – A central difference. 
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When constructing a finite difference method, we are entitled to choose which kind of difference to 

use. They are all approximations which (under normal/most conditions) converge to the derivative. 

Formally, when discretising a differential equation to apply the finite difference method, we simply 

replace derivatives with difference operators. This also works for second and higher order 

derivatives, for example: 

 
   

   
 
   

   
 

 

  
 
  

  
  

          

   
 
         

   
  - Eq 2.4.8 

 

A forward difference was used to expand the difference operator the first time. Usually this is 

balanced out by taking a backward difference the second time: 

         
   

 
                   

   
 

 
         

   
 
             

   
  - Eq 2.4.9 

 

Finally, finite difference methods can be applied to partial differential equations, involving more 

than one independent variable. For example, a finite difference scheme for the heat equation can be 

derived like so: 

  

  
  

   

   
 

  

  
  

   

   
 

  
        

   

  
  

    
       

        
   

   
 

   
        

    
   

   
     

       
        

      - Eq 2.4.10 

 

The two indexes,   and   are a reflection of the two independent variables   and  . Parentheses 

around the superscripts are there to indicate that they indicate locations in sequences rather than 

powers as in     . In this situation we have a grid of nodes rather than a sequence. This is 

illustrated in figure 2.4.5. 
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Fig 2.4.5 – A grid of nodes. Note that the vertical location of the nodes does 

not indicate their value as in fig 2.4.2. Another perpendicular axis would be 

needed for that, which would go into or out from the page. 
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2.5 | The Trinomial Method 

The idea behind the trinomial method is a heuristic approach to option pricing. Recall equation 

2.2.1: 

 
  

 
          - Eq 2.2.1 

 

Firstly,  , the ‘drift term’ is replaced by the risk-free interest rate  . The rationale is that if the asset 

were expected to rise more than the interest rate, traders would buy that asset right now, raising 

the price now until the expectation of the future rise was in line with the interest rate. Likewise, if it 

were expected to rise less than the interest rate, it would be sold until it was similarly balanced. I’m 

keen to get rid of this term straight away because unfortunately,   is mixed up with a different 

meaning in convention, and will be used later on with that other meaning. 

 
  

 
         - Eq 2.5.1 

 

We want a discrete version of this equation, so we change the derivatives to difference operators, 

and simplify: 

  

 
         

  
        

   

  
   

         

   
        

                - Eq 2.5.2 

 

In the equation above,    is normally distributed (mean  , variance   ), which means the next asset 

price is potentially anywhere in       *. In the trinomial method, we approximate        

     with a discrete distribution over 3 values with the same mean and variance within errors 

        . These parameters are the multipliers  ,  , and  , with corresponding probabilities   , 

  ,   . This is illustrated in figure 2.5.1. 

                                                           
*
It may seem troubling that a non-zero probability is placed on   

       . However, in the limit     , this 
probability converges to zero. 
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Fig 2.5.1 –   
   

 and its child nodes in a trinomial tree. 

These relationships can be described by a general formula; equation 2.5.3: 

   
            

     - Eq 2.5.3 

 

With this established, each node is associated with the option value   
    for that time and asset 

(underlying) value. We reason that each option price   
    should be its expected value at the next 

time step discounted to the current time step. Hence: 

  
   

             
     

     
     

       
     

  

       
          

          
            

       - Eq 2.5.4 

 

We put many of these time steps together to form a trinomial tree, as illustrated by figure 2.5.2. 
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Fig 2.5.2 – A trinomial tree. 

Note the recombination of the nodes; going up and down arrives at the same places as going along 

the middle path twice. Without this, each time step would have triple the nodes of the previous time 

step, and the method would be vastly less efficient. Enforcing re-combination means equation 2.5.5 

must hold. This should clear up any confusion about equation 2.5.3 not involving  . 

        - Eq 2.5.5 

 

To apply this in pricing an option, the time to expiry,  , is divided into   time steps each of size   . 

At expiry, the option price is simply the payoff function, denoted by     , so we have: 

   
        

      - Eq 2.5.6 

 

Using 2.5.4 and 2.5.6, we calculate the   
    values back through the tree until   

    is calculated. 

There is more than one way to parameterise the trinomial method. One of them is the Jarrow-Rudd* 

parameterisation4: 

                    

                                                           
*
I credit Jarrow and Rudd with this parameterisation, but really it is derived from their binomial method 

parameterisation by skipping every second time step. 
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- Eq 2.5.7-12 

where 

     
 

 
    - Eq 2.5.13 

 

The fact that   is           and not   is rather puzzling. Because the middle multiplier   is     , 

the nodes drift upward at a rate of  . This is a bit counter-intuitive, as one might expect that if the 

nodes are to drift, they should drift upward by the interest rate, not the interest rate perturbed by 

        . This is explained in appendix A.1. 
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Chapter 3 

Equivalence 

 

3.1 | First Attempt 

Saying “the trinomial method is equivalent to the finite difference method” is incomplete. To see 

this, let’s go from the Black Scholes equation (2.2.2) straight into a finite difference method, and see 

where it goes wrong. 

This is the Black-Scholes equation: 

 
  

  
 
 

 
    

   

   
   

  

  
       - Eq 2.2.2 

 

The equation is discretised: 

  

  
 
 

 
    

   

   
   

  

  
       

To get as much likeness as possible, we take         and       from the      th time step, use 

a central difference for      , and take   in    from the current time step: 

  
        

   

  
 
 

 
       

 
    
         

          
     

   
    

    
          

     

   
    

   
    

- Eq 3.1.1 

The reason why         and       are from the      th time step is because we want to derive 

  
    from information in the      th time step. We could achieve the same thing by reversing 

time with      and derive the scheme more conventionally, but by doing that we could easily lose 

sight of what’s actually going on – deriving   
    from     

   ,   
     ,     

     , which is crucial to 

finding equivalence with the trinomial method. 

Equation 3.1.1 can be rearranged into equation 3.1.2. 

         
     

      
   

    
 
     

   
     

         
       

   

   
   

     

  
      

   

    
 
     

   
     

      

- Eq 3.1.2 

Equation 3.1.2 shows a lot of promise towards equivalence with the trinomial method. Note the 

similarity with equation 2.5.4: 
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  - Eq 2.5.4 

 

In both cases,   
    is a linear combination of     

   ,   
     , and     

     . This means calculating   
    

involves a triangular region of influence as illustrated in figure 3.1.1. 

 
Fig 3.1.1 – The triangular region of influence for the finite difference method. 

The difference between this triangular region of influence and the tree structure in the trinomial 

method is only cosmetic. In both cases each node value is derived from the values of the right, upper 

right, and lower right nodes. However, there are a couple of numerical differences. 

The first difference,       vs.      is actually acceptable, since: 

           
 

 
      

 

 
                     

This is why   in    was chosen to be   
    instead of   

      which would be more conventional. This 

choice creates the         term, which would otherwise change the coefficient of   
     . 

The critical difference is that the coefficients on the right hand side of 3.1.2 are not constant, as they 

depend on   . This could be avoided by allowing    to vary and instead be    , such that        

were constant. In fact, doing this in the right way could make for a scheme extremely similar to the 
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trinomial method. However, variable steps are not desirable to work with and the coefficients 

couldn’t be made exactly the same. 

Indeed (using a constant   ), the coefficients have to be different because the nodes are not 

structured in the same way as the trinomial method. This is illustrated in figure 3.1.2. 

 
Fig 3.1.2 – The structures of Trinomial and Finite Difference Nodes. 

If the finite difference method is to be equivalent to the trinomial method, we’ll need the nodes to 

match trinomial nodes. Clearly, the trinomial method nodes are not spaced evenly along the S axis, 

but as mentioned we can’t get equivalence by simply using variable    steps. The way we get 

around this is to scale the   axis by performing a substitution, so that an even spacing along the new 

axis gives us the correct variable spacing along the   axis (see section 2.3). 
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3.2 | Equivalence under Kamrad-Ritchken Parameters 

If we first perform a substitution 

         - Eq 3.2.1 
 

and otherwise derive the finite difference method in the same way as in section 3.1, the method is 

equivalent to the trinomial method under Kamrad-Ritchken5 parameters*: 

            
 

   
 
    

   
 

         
 

  
 

             
 

   
 
    

   
 

- Eq 3.2.2-7 

where 

     
 

 
    - Eq 2.5.13 

 

We start with the Black-Scholes equation (2.2.2): 

 
  

  
 
 

 
    

   

   
   

  

  
       - Eq 2.2.2 

 

In appendix A.2 this equation is transformed by       , and a finite difference scheme derived in 

the same way as in section 3.1 to produce equation 3.2.8: 

         
     

    

    
 
   

   
     

         
    

   
   

       
    

    
 
   

   
     

       

- Eq 3.2.8 

If we place these nodes on the     plane, we want them to exactly match the locations of the 

trinomial method nodes. For this to happen, we choose    to recreate the spacing in the trinomial 

method. We derive    loosely here and show later that the nodes actually match. 

In the Kamrad-Ritchken parameterisation, the   values at the nodes are constant across time, so we 

have that: 

    
       

     

Substituting equation 3.2.2, we have: 

                                                           
*
This is actually a family or parameterisations as   is not specified and may be chosen arbitrarily. However, 

     is thought to give good results
1
. 
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           - Eq 3.2.9 

 

As mentioned, we will see later how this actually does correctly distribute the nodes in the     

plane. First, we see that: 

    

   
 

    

      
 

 

  
 

   

   
 

   

      
 
    

   
  

and substitute them into 3.2.8: 

         
     

 

   
 
    

   
     

         
 

  
   

       
 

   
 
    

   
     

       

- Eq 3.2.10 

If we substitute the Kamrad-Ritchken parameters (equations 3.2.2-7) into the trinomial method 

equation relating node values together (equation 2.5.4), we get: 

      
     

 

   
 
    

   
     

         
 

  
   

       
 

   
 
    

   
     

       

- Eq 3.2.11 

The only difference here is         vs.     , which, as mentioned in section 3.1, only differ by 

      . This is a minor caveat in the equivalence between the two methods. 

From here all that’s left is to show that the nodes really are structured in the same way. In the finite 

difference method: 

    
      

       

  
      

         

Equation 3.2.1 gives       , so we can put these nodes on the   axis using    
   

   
   : 
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Now substitute 3.2.9: 

  
   

   
   

        
 
  

use 3.2.2 to substitute   for       : 

  
   

     
   
  

In the Kamrad-Ritchken parameterisation,    , so we can multiply the RHS by   without losing 

equality: 

   
   

         
   
  - Eq 3.2.12 

 

Equation 3.2.12 is the same as 2.5.3. Therefore the nodes are distributed the same way along the   

axis. As for distribution along the   axis, if the nodes start at    , and the same time step    is 

used, then the nodes will be placed the same along this axis as well. 

Therefore, as the nodes are located in the same places on the     plane, the same payoff (final 

condition) can be applied to the   
    values, and the same   

    will be derived. (Except for 

        vs.     .) 

More conventionally, what “should” be done, is for the final condition to be transformed by 

      , that is: 

            

               - Eq 3.2.13 
 

and discretised: 

  
   

      
   

  

   
        

      - Eq 3.2.14 

 

This is the same final condition as the trinomial method’s final condition (equation 2.5.6). 

  



25 
 

3.3 | A Problem with Kamrad-Ritchken Parameters 

There’s something unsettling about the Kamrad-Ritchken parameterisation. The probability of going 

up is greater than the probability of going down, and intuitively it seems this is to compensate for 

the upward drift of asset prices. This is illustrated in figure 3.3.1. 

 
Fig 3.3.1 – A trinomial tree with node darkness in each time slice proportional to 

that node’s weight using Kamrad-Ritchken parameters. 

The greater probability of going up results in an upward drift of the distribution of node weights. By 

node weights, I mean the coefficients used when expressing   
    as a linear combination of the node 

values in that time slice. This is the probability of reaching that node. 

By allowing the distribution to drift upward, there is much less weight in the nodes of the bottom 

half of the tree, yet, they consume the same computational resources. 

For these reasons, it is more conceptually satisfying, and perhaps more efficient, to instead allow the 

nodes to drift upward. This reflects the upward drift of asset prices, and results in a symmetrical 

distribution of node weights. This is provided by the Jarrow-Rudd parameterisation. 
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3.4 | Equivalence under Jarrow-Rudd Parameters 

Recall the Jarrow-Rudd parameterisation from section 2.5: 

                    

              

                     

- Eq 2.5.7-12 

where 

     
 

 
    - Eq 2.5.13 

 

As discussed in section 3.3, using these parameters means the nodes drift upwards. The middle 

multiplier is      and not  . To construct a finite difference method equivalent to the trinomial 

method under this parameterisation, we need a transform that will structure the nodes with this 

upward drift. The transform is: 

               - Eq 3.4.1 
 

Recall the Black-Scholes equation (2.2.2): 

 
  

  
 
 

 
    

   

   
   

  

  
       - Eq 2.2.2 

 

Appendix A.3 applies the transform to the Black-Scholes equation and a finite difference scheme is 

derived in the same way as in section 3.1 to produce equation 3.4.2: 

         
    

    

    
    
         

    

   
   

      
    

    
    
       

- Eq 3.4.2 

Just like in section 3.1, we derive    loosely with the intention of recreating the spacing between 

the nodes in the trinomial method. From any node   
   , we get to the node above it by multiplying 

by   and dividing by  , as illustrated by figure 3.4.1. 
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Fig 3.4.1 – The connection between   
   

 and     
   

. 

So, we have: 

     
    

 

 
   

     - Eq 3.4.3 

 

substitute 2.5.7, 2.5.9: 

    
    

          

    
   

    

    
      

          

    
            

                

        
                 

                 

        
                 

                 

    
      

          

          * - Eq 3.4.4 

 

We will see later how this actually does correctly distribute the nodes in the     plane. First: 

    

   
 

    

      
 
 

 
  

substitute this into 3.4.2: 

                                                           
*
Note that this is compatible with the Kamrad-Ritchken value of    with     . By using the Kamrad-

Ritchken    instead, leaving   as an arbitrary parameter, the Jarrow-Rudd trinomial method can be extended 
to allow independent variation of the time and   node spacing. 
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  - Eq 3.4.5 

 

If we substitute the Jarrow-Rudd parameters (equations 2.5.7-12) into the trinomial method 

equation relating node values together (equation 2.5.4), we get: 

       
   

 
 

 
    
     

 
 

 
  
     

 
 

 
    
     

  - Eq 3.4.6 

 

Once again, the only difference is         vs.     , which differ negligibly by       . 

The only thing left is to confirm that our choice of    really does result in the same node placement 

as the trinomial method: 

  
     

  
   

 
           

       
 

  
     

       
   

 

   
           

    - Eq 3.4.7 

 

    
   

   
   

     

substitute 3.4.4: 

    
   

   
   

       

    
           

               

     
   

         
   

            

     
   

               
   

      

    
            

    

  
             

    

  
             

     

substitute this into 3.4.7: 

  
                  

    

  
                  

    

  
                            

    

   
            

     - Eq 3.4.8 
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Equation 3.4.8 is identical to 2.5.3. Therefore, the node placement is the same in the two methods. 

This means the same final values will be applied to   
   

 and the same value for   
   

 will be 

calculated, except for the difference due to         vs     . 

Just like in section 3.2, convention would have us instead transform the final condition (payoff 

function) and discretise it in order to show the   
   

 values are the same: 

            

                

  
   

      
   

     

   
   

     
   

   - Eq 3.4.9 

 

This is indeed the same as the final condition for the trinomial method (2.5.6). 
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3.5 | Perfect Equivalence 

In the equivalence of finite difference methods with both the Kamrad-Ritchken and Jarrow-Rudd 

trinomial methods, there has been the caveat of         vs.     . Rubinstein (2000)1 notes this 

caveat and describes its negligibility with a numerical example; that with          and 

          , we have                   and                 . 

However, as it turns out, if we transform A.3.8 (derived from the Black-Scholes equation) one step 

further, it is not necessary to admit this imperfection*. 

 
  

  
 
 

 
  

   

   
      - Eq A.3.8 

 

The transform is: 

         - Eq 3.5.1 
 

        

from which we derive: 

  

  
 
  

  
          

  

  
       

   

   
 

 

  
 
  

  
  

 

  
 
  

  
     

   

   
     

Substitute these into A.3.8: 

  

  
       

 

 
  

   

   
         

  

  
    

 

 
  

   

   
      

 
  

  
 
 

 
  

   

   
    - Eq 3.5.2 

 

It is rather satisfying to see that this journey to equivalence has culminated in transforming the 

Black-Scholes equation into the heat equation (           ). Also, by removing   , this 

eliminates the inconsistency of choosing    
    instead of    

     , and we can discretise in the 

conventional backward-Euler fashion†: 

  

  
 
 

 
  

   

   
   

                                                           
*
If you apply the same transform to A.2.6 and follow the same steps, the same perfect equivalence can be 

found with the Kamrad-Ritchken trinomial method. 
†
Usually, backward-Euler discretisation results in an implicit scheme as it generates multiple terms from the 
     th time step. However, the resulting scheme is explicit because we are deriving  th step terms from 
     th step terms and not the other way around. 
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       - Eq 3.5.3 

 

Since the nodes are still distributed as they are in section 3.4 we again take          (3.4.4): 

    

   
 

    

     
 
 

 
  

substitute this into 3.5.3: 

   
    

 

 
    
      

 

 
  
      

 

 
    
       - Eq 3.5.3 

 

At this point we do something a bit different; undo the transformation now that discretisation has 

been applied by substituting   
   

   
   
       into 3.5.3: 

  
          

 

 
    
              

 

 
  
              

 

 
    
              

multiply both sides by          : 

       
    

 

 
    
    

 

 
  
    

 

 
    
     - Eq 3.5.4 

 

This is not just nearly the same but identical to 3.4.6, the relation between the nodes values in the 

trinomial method under Jarrow-Rudd parameters. Further, we can once again argue that the final 

condition is the same because the locations of   
    in the     plane are the same in both methods. 

However, for convention’s sake, we transform                 from section 3.4 to: 

                                

discretise: 

  
         

   
            

and undo the transformation as before using   
      

         : 

  
               

   
             

  
         

   
       

   
        

      - Eq 3.5.4 

 

This too is identical to the trinomial method, so perfect equivalence has been achieved. 
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3.6 | Binomial Equivalence 

Binomial methods are equivalent to special cases of trinomial methods with an extra step between 

each trinomial time step. This is illustrated in figure 3.6.1. 

 
Fig 3.6.1 – The compatible structure of binomial and trinomial nodes. 

Intuitively, we see that a binomial method with an even number of time steps    should be 

equivalent to a trinomial method of   time steps with parameters: 

          
  

              

          
   

- Eq 3.6.1-6 

 

We will demonstrate this by using   
    and   

    for the asset and option prices in the binomial 

method. Multiplying by   to go up and by   to go down produces the following relations: 

     
         

    - Eq 3.6.7 

     
         

     - Eq 3.6.8 

 

Note that this arrangement excludes some   coordinates from corresponding to actual nodes, as for 

example the original   
    leads to   

    and    
    and there is no   

   . These relations are satisfied by 

this general formula for   
   : 

   
     

 
 
     

 
 
 
     

  - Eq 3.6.9 

 

Using this we can show a correspondence between the binomial and trinomial nodes if they have 

the same starting node: 
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  - Eq 3.6.10 

 

Recall equation 2.5.3: 

   
            

     - Eq 2.5.3 

 

substitute 3.6.1, 3.6.3: 

  
                

              
     

substitute 3.6.9: 

   
   

    
    

  - Eq 3.6.11 

 

Naturally, the option values for the final nodes in the binomial method are set to the payoff 

function, just like in the trinomial method, hence: 

   
    

      
    

   

substitute 3.6.11: 

   
    

     
   
   

substitute 2.5.6: 

    
       

     - Eq 3.6.13 

 

The binomial method has the same heuristic feature that the option value at each node is the sum of 

the option values in the derived nodes each multiplied by the probability of travelling to that node, 

discounted by the time step, so we have: 

  
 
 
     

          
            

       - Eq 3.6.14 

 

Manipulating the  ,   values of 3.6.14 produces the following variants: 

  
 
 
      

            
              

       - Eq 3.6.15 

  
 
 
        

              
            

       - Eq 3.6.16 

  
 
 
        

            
              

        - Eq 3.6.17 

 

Multiply both sides of 3.6.15 by  
 

 
   : 

       
         

 
 
        

            
 
 
        

         

substitute 3.6.16, 3.6.17: 
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        - Eq 3.6.18 

 

From here we let    be the proposition that   
       

    . We already have    from 3.6.13. If we 

have      for some  , this gives: 

     
     

      
      

 - Eq 3.6.19 

   
     

    
      

 - Eq 3.6.20 

     
     

      
      

  - Eq 3.6.21 

 

substitute 3.6.19-21 into 3.6.18: 

       
    

   
     

     
        

     
   

     
     

 

substitute 3.6.2, 3.6.4, 3.6.6: 

        
    

       
     

     
     

       
     

  - Eq 3.6.22 

 

Recall 2.5.4: 

       
   

       
     

     
     

       
     

  - Eq 2.5.4 

 

This implies: 

   
   

    
    

  - Eq 3.6.23 

 

Hence        . Since we have   , by mathematical induction, we have    for all      . In 

particular,    gives: 

   
      

     - Eq 3.6.24 

 

Therefore every binomial method has an equivalent trinomial method. 

It’s quite nice to see that just as this research has revolved around using finite differences in reverse, 

it has also led to a reverse induction proof. 

The Jarrow-Rudd parameterisation is actually a binomial parameterisation. Equations 2.5.7-12 

presented elsewhere as the Jarrow-Rudd parameterisation is actually derived from the following*: 

                    

                                                           
*
When doing this derivation, be careful not to confuse    in the binomial method and    in the trinomial 

method, which are different. I suggest replacing    in the binomial parameters with   and then using the fact 
that the trinomial’s    is   . You could use     and     but notation must always have at least some context-
dependence. 
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- Eq 3.6.25-28 

Also, Rubinstein (2000)1 shows that there is also an equivalent binomial method for the Kamrad-

Ritchken parameterisation with                     . 

The consequence of all this is, by extension, the finite difference method is also equivalent to the 

binomial method. 
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Chapter 4 

Variants and Implementation 

 

4.1 | Basic European Options 

In a purist approach to implementing the trinomial method, the trinomial tree would actually be 

constructed. The underlying prices would be calculated by moving forward through the tree, the 

payoff function applied, and then the option prices would be calculated by moving backwards 

through the tree. This is horribly inefficient. 

Instead, the underlying prices for the final nodes can be calculated directly by substituting     

into 2.5.3: 

   
            

     - Eq 4.1.1 

 

The optimisation, which is much more dramatic, is not keeping the entire tree in memory. Instead, 

two arrays (std::vectors) are used to store time slices of the tree. At any one time, one array 

stores the  th time slice, and the      th time slice is calculated into the other array. The  th time 

slice data is no longer needed, so the first array can then be re-used for the      th time slice, and 

so on. This is illustrated in figure 4.1.1. 

 
Fig 4.1.1 – Calculation of option values without storing the entire trinomial tree. 
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Table 4.1.1 shows some sample call calculations for a few strike prices with 256 and 1024 time steps. 

  
            Steps Kam/Rit Jar/Rud Analytic Exec time 

                                                      

                                                       

                                                      

                                                       

                                                         

                                                          

Table 4.1.1 – Sample call calculations using the trinomial method. 

Table 4.1.2 shows some sample at-the-money put calculations for increasing time steps. 

  
            Steps Kam/Rit Jar/Rud Analytic Exec time 

                                                             

                                                             

                                                              

                                                              

                                                               

                                                               

Table 4.1.2 – Sample put calculations using the trinomial method. 

Figure 4.1.2 shows the convergence of the Kamrad-Ritchken and Jarrow-Rudd trinomial methods by 

plotting the relative error against the number of time steps. 
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Fig 4.1.2 – Convergence of the Kamrad-Ritchken and Jarrow-Rudd trinomial 

methods.   
       ,      ,       nths,     ,      . 

Chen, Chen and Chung (2001)6 note that binomial methods have a convergence of roughly       . 

Due to the equivalence established in section 3.6 we should expect the same “rough” rate of 

convergence in these trinomial methods. Since we suspect the error is       , we should expect 

        to be     . Figure 4.1.3 shows that this appears to be the case. 

 
Fig 4.1.3 – Relative error * N for the Kamrad-Ritchken and Jarrow-Rudd 

trinomial methods.   
       ,      ,       nths,     ,      . 
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4.2 | Combining Multiple Underlying Prices 

There’s another really big optimisation to be made when calculating the option price for multiple 

underlying prices, which is often the case. When using the trinomial method, option values are 

calculated for every node in the tree, not just the root node. For future time steps, the option price 

is calculated for more and more underlying prices for each time step. Inspired by this idea, we place 

multiple nodes at    , and their trees overlap. Indeed, the vast majority of the nodes can simply 

be shared by both trees. This is illustrated with just two nodes at     in figure 4.2.1. 

 
Fig 4.2.1 – Two overlapping trinomial trees. 

If we use    for the number of starting nodes, then without this optimisation you would have to do 

   separate       calculations, which is      
  . With this optimisation, the calculation is 

         . In practical terms, this generally means that the option prices for the entirety of the 

desired domain of underlying prices can be calculated in almost the same time as the calculation of 

just one option price. 

Figure 4.2.1 shows a plot of   against   with data calculated in this way. 
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Fig 4.2.1 – Plot of call option price against underlying price. The 

Kamrad-Ritchken price curve is not visible as it is covered by the Jarrow-Rudd 

price curve.      ,         ,     ,      ,      . 

Figure 4.2.2 shows a similar plot for put option prices. 

 
Fig 4.2.2 – Plot of put option price against underlying price. The 

Kamrad-Ritchken price curve is not visible as it is covered by the Jarrow-Rudd 

price curve.      ,         ,     ,      ,      . 
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4.3 | American Put Options 

As mentioned in section 2.1, American put options must always be at least as valuable as the payoff 

function, since the option can be exercised early. For the trinomial method, implementing this is 

quite easy. Instead of using equation 2.5.4 to derive option values: 

       
          

          
            

       - Eq 2.5.4 

 

we modify this to: 

  
   

                 
     

     
     

       
     

      
   
    

- Eq 4.3.1 

This can be seen visually as the option values formerly near or below the payoff function are lifted so 

that they no longer do so. This is illustrated in figure 4.3.1. 

 
Fig 4.3.1 – American and European put options. Corresponding 

Kamrad-Ritchken prices are excluded as they would not be visible.      , 

         ,     ,      ,      . 

One ghastly way to implement this is to literally use equation 4.3.1 and calculate   
    using equation 

2.5.3: 

   
            

     - Eq 2.5.3 

 

When I tried this, calculating the American prices for figure 4.3.1 took 34.4 milliseconds. By 

comparison, calculating the European prices for figure 4.3.1 took just 0.890 milliseconds! 
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The reason for the miserable performance hit is that the European calculation for each node is 

actually extremely simple. By combining the discount with the     
     ,   

     ,     
      coefficients, 

equation 2.5.4 can be implemented with just three multiplications and two additions, as well as 

another four integer additions for array look-up. Using std::pow for 2.5.3 probably means doing 

logarithms and exponentiations, which are far more expensive, not to mention the two extra 

multiplications, and taking the maximum of two values. 

One solution is to keep track of   
    while progressing vertically through the time slice. If starting at 

the top of the time slice, you can get each next   value using     
   

        
   

, a corollary of 

equation 3.4.3. Using this method, the time to calculate the figure 4.3.1 data dropped to a much 

more respectable 1.679 milliseconds, roughly double the European prices calculation. 

Despite the significant extra costs of these straightforward approaches, the early exercise of 

American options actually provides optimisation opportunities. These should actually make it 

possible to achieve better performance than European option calculation. I leave this to others to 

implement, but basically, by keeping track of the optimal exercise boundary, it can be known ahead 

of time which nodes will be set to the payoff function and which will be calculated conventionally. 

The payoff function is significantly cheaper than equation 2.5.4, so those nodes should have a 

quicker calculation. In addition to this, with more sophistication, those nodes beyond the optimal 

exercise boundary could instead be pruned so that no calculation is needed for them at all. 
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4.4 | Dividends 

Two kinds of dividends are quite simple to incorporate into the trinomial method. The first is the 

continuous dividend, which pays the holder of the asset at a continuous rate of    . Continuous 

dividends cause asset prices to drift differently, since otherwise investors would always prefer assets 

which paid continuous dividends, which would provide an expected return of not only the interest 

rate, but also the dividend. Under the Efficient Market Hypothesis, which is part of the Black-Scholes 

framework, assets which pay continuous dividends must therefore drift at      instead of  . 

What this means for the trinomial method, is that asset prices should additionally decline by a factor 

of       for each time step. This can be incorporated into existing parameters by multiplying each of 

 ,  , and   by       . For example, the Jarrow-Rudd parameterisation can be extended to options 

on assets with continuous dividends as follows: 

                         

                   

                          

- Eq 4.4.1-6 

where: 

     
 

 
    - Eq 2.5.13 

 

Table 4.4.1 contains some option prices calculated in this way. 

  
               Steps Trinomial Analytic 

                                                

                                                

                                                

                                                

                                                

Table 4.4.1 – Sample call calculations with continuous dividends based on the 

Jarrow-Rudd trinomial method. 

The other kind of dividend simple to incorporate is a discrete dividend that is paid as a proportion of 

the underlying price at that time. In a similar way to continuous dividends, this has the effect at the 

time of the dividend of the asset price losing    of its value (multiplying by     ). There is a 

slightly simpler argument this time that if this were not the case, arbitrageurs would buy the asset 

immediately before the dividend and sell immediately afterwards. The drop in price must match the 

dividend exactly or there would be a (theoretically) risk-free profit to be made. 
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In the trinomial method, this could be implemented by multiplying the asset prices by      at the 

time step closest to the dividend time. However, the impact of this is that every successive asset 

price      multiplied by what it would otherwise have been, including the final nodes. Therefore 

the same effect can be achieved by simply multiplying   
   

 by     . This suggests that the price of 

options with a proportional dividend    at some time before expiry can be calculated simply as 

            , which is indeed the case. Although it is trivial, for completeness, table 4.4.2 

provides some numerical examples. 

  
               Steps Trinomial Analytic 

                                            

                                         

                                         

                                        

                                          

Table 4.4.2 – Sample call calculations with discrete proportional dividends based on 

the Jarrow-Rudd trinomial method. 
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Chapter 5 

Final Thoughts 

 

So this project was chiefly about the equivalence between the trinomial and finite difference 

methods of option pricing. The most remarkable and concise way to put this is that under the 

transforms                   
    ,        , the explicit finite difference scheme of the Black-

Scholes equation is identical to the Jarrow-Rudd binomial method, and thus identical to its derived 

trinomial method. Parallel to this, under the transforms       ,        , the scheme is 

identical to the Kamrad-Ritchken trinomial method, for which there exists an equivalent binomial 

method. Probably the most important thing about equivalence is that it grants legitimacy to the 

trinomial methods, which are heuristic in their derivation. 

I’ve been a bit surprised that this report has been so dominated by the theoretical side. As a result, 

the C++ implementation of the trinomial/finite difference method is less mature than I would have 

liked. In particular, the code for American put options is not optimal and the dividend calculations 

were simply hacked together and are not accessible in a user friendly manner. 

Especially after studying numerical heat diffusion as a project last semester, perhaps the most 

important thing I’ve gained from this study is an easy familiarity with various numerical methods. 

I’ve always thought it incredibly important to gain intuitive understanding of mathematical concepts, 

and this project has delivered that for me. When explaining the background of finite differences, I 

was surprised at how natural it felt and how easily that content unfolded. 

I’ve identified a few peripheral ideas that look worth exploring. 

First, it appears that in the trinomial method, the weights of the nodes quickly become extremely 

small as they deviate from the centre. Having a minimum weight and pruning all nodes lower than 

that weight could result in a trinomial method which is computable in less than       time. If done 

right, by lowering the minimum weight as   increases, it might be provable that the method 

converges and still does so at the rate of       . 

Second, speaking of the rate of convergence, figure 4.1.3 suggests it follows a very predictable 

pattern. By identifying the properties of this pattern, perhaps calculations at multiple time steps 

could be used to produce option prices far more accurately than either of those calculations, or 

perhaps even the calculation that could be done with the combined time it took to perform them. 

Also, I did some preliminary work on a hybrid scheme that derived the trinomial prices at the upper 

and lower edges of the tree in the conventional way, but used a Crank-Nicholson method and the 

tridiagonal matrix algorithm to calculate the prices in between. It appeared that the error from that 

scheme converged to double the error from the normal scheme, and that might conceivably be 

exploited in a similar way. 

Third, I have a solution in mind for the problem of fixed discrete dividends. These discrete dividends 

pay a fixed amount instead of a proportion of the underlying. This causes a jump in the asset price at 
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the time of the dividend, but it can’t be solved so easily because attempting the same approach used 

for proportional dividends would destroy the re-connectivity of the tree’s nodes. However, this 

might be solved by perturbing the option prices at the relevant time step instead. We would have 

liked the asset prices to be adjusted by the dividend, but alternatively we could approximate the 

option prices that would have resulted from that adjustment. We can approximate       by 

     
   

   
   
     , thus if we want to perturb the option values to what they would have been we 

could simply perform   
   

   
   

           , where    is the fixed discrete dividend. 

Fourth, the potential optimisations described at the end of section 4.3 for American put option 

pricing look useful. After all, since the Black-Scholes formula provides plain European option prices 

anyway, and what really motivates the binomial and trinomial methods is to price these and other 

complex options. 

Finally, there is the prospect that a couple of results in this report are original. After some searching 

through academic papers, I have not found anyone describe the “perfect equivalence” I describe in 

section 3.5. Also, the fact that                   
    ,         transforms the Black-Scholes 

equation to the heat equation might be important because it appears non-trivially different from the 

transform usually used to do this in the process of deriving the Black-Scholes formula. As I initially 

only found Rubinstein’s1 result of equivalence with Kamrad-Ritchken parameters, I had hoped that 

my discovery of equivalence with Jarrow-Rudd parameters was previously undiscovered. However, 

there is a draft paper by Vonatsos7 available online which notes this. It might still be an unpublished 

discovery though. 
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Appendix 

 

A.1 |             

The term           turns up in quite a number of places in this report. We also see           

in equation 2.2.5, part of the Black-Scholes formula, which is strangely inconsistent. 

The reason for its appearance in the middle multiplier of the Jarrow-Rudd parameterisation 

       is to compensate for the volatility bringing up the mean. We can see this by calculating 

the weighted mean of  ,  ,   in the Jarrow-Rudd parameterisation while neglecting terms of 

        . Remember this weighted mean should be approximately      , to match the discretised 

stochastic process given by equation 2.5.2. 

              
 

 
           

 

 
     

 

 
           

 

 
 

 
             

 

 
           

 
  

 

 
       

 
 

 
             

 

 
           

 
  

 

 
 

 
             

 

 
        

 

 
        

 

 
             

 

 
        

 
 

 
             

 

 
        

 

 
             

      
 

 
      

So the volatility component brings up the mean by          . Clearly, if we want the weighted 

mean to be       , we require that            , which gives            . 
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A.2 | Finite Difference Scheme under        

We perform a logarithmic transformation of S so that the nodes will be distributed on a logarithmic 

scale: 

         - Eq A.2.1 
 

This gives: 

     

  

  
      

 
  

  
 
 

 
  - Eq A.2.2 

 

We’ll need to replace      : 

 

  

  
 
  

  
 
  

  
  

substitute A.2.2 for      : 

 
  

  
 
 

 
 
  

  
 - Eq A.2.3 

 

We’ll also need something for        : 

   

   
 

 

  
 
  

  
   

substitute A.2.2 for      : 

   

   
 

 

  
 
 

 
 
  

  
  

   

   
  

 

  
 
  

  
 
 

 
 
 

  
 
  

  
  

   

   
  

 

  
 
  

  
 
 

 
 
  

  
 
 

  
 
  

  
   

Substitute A.2.2 for      : 

   

   
  

 

  
 
  

  
 

 

  
 
   

   
 

 
   

   
 

 

  
 
   

   
 
  

  
   - Eq A.2.4 
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Recall 2.2.2 the Black-Scholes equation: 

 
  

  
 
 

 
    

   

   
   

  

  
       - Eq 2.2.2 

 

Now substitute A.2.3, A.2.4 for      ,        : 

  

  
 
 

 
     

 

  
 
   

   
 
  

  
     

 

 
 
  

  
      

  

  
 
 

 
   

   

   
 
  

  
   

  

  
      

 
  

  
 
 

 
  

   

   
    

 

 
   

  

  
       - Eq A.2.5 

 

Recall 2.5.13: 

     
 

 
    - Eq 2.5.13 

 

Now substitute 2.5.13 (RHS for LHS) in A.2.5: 

 
  

  
 
 

 
  

   

   
  

  

  
       - Eq A.2.6 

 

discretise: 

  

  
 
 

 
  

   

   
  

  

  
      

   
     

   
   
 

  
 

  

    
     

         
          

       
 

   
     

          
          

       

(Notice the central difference for      , See section 2.4.) 

   
        

    

  
    

    
  

   
  
      

      

    
    
      

      

    
    
        

         
     

    

    
 
   

   
     

         
    

   
   

       
    

    
 
   

   
     

       

- Eq 3.2.7 
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A.3 | Finite Difference Scheme under              

              - Eq A.3.1 
 
 
 

    
 

 
   - Eq 2.5.13 

 

Rewriting in terms of   we have: 

         

          - Eq A.3.2 
 

Differentiating by  , we get the following: 

  

  
         

 
  

  
 
 

 
  - Eq A.3.3 

 

A.3.1 may be rewritten as            . From this we have: 

 
  

  
     - Eq A.3.4 

 

We will want something to replace      : 

  

  
 
  

  
 
  

  
  

substitute A.3.3: 

 
  

  
 
 

 
 
  

  
  - Eq A.3.5 

 

We also need to replace        : 

   

   
 

 

  
 
  

  
   

substitute A.3.5: 

   

   
 

 

  
 
 

 
 
  

  
  

  

  
 
 

  
 
 

 
 
  

  
   

 

substitute A.3.3: 

   

   
 
 

 
 
 

  
 
 

 
 
  

  
  

 

 
  

 

 
 
   

   
  

 

  
 
  

  
 
  

  
   



55 
 

from A.3.3           so        : 

 
   

   
 
 

 
  

 

 
 
   

   
  

 

  
   

  

  
  

 

  
 
   

   
 
  

  
   - Eq A.3.6 

 

For those not particularly familiar with multivariate calculus, what comes next is a tricky and subtle 

point:       also needs replacing. The problem is that       originally meant the derivative of   

across   as   remains constant. However, after   changes from a function of   and   to a function of 

  and  ,       will mean the derivative of   across   as   remains constant, which is different. If   

goes to    while   is constant,   changes from            to            . Similarly, if   goes to    

while   remains constant,   will go from       to       . 

The equation below comes from the theory of multivariate calculus, and relates the original 

meaning of       on the left to the new meaning of       on the right: 

  

  
 
  

  
 
  

  
 
  

  
  

substitute A.3.4: 

 
  

  
 
  

  
  

  

  
  - Eq A.3.7 

 

Recall the Black-Scholes equation (2.2.2): 

 
  

  
 
 

 
    

   

   
   

  

  
       - Eq 2.2.2 

 

now substitute A.3.5, A.3.6, A.3.7: 

  

  
  

  

  
 
 

 
     

 

  
 
   

   
 
  

  
     

 

 
 
  

  
      

  

  
  

  

  
 
 

 
   

   

   
 
  

  
   

  

  
       

substitute 2.5.13: 

  

  
    

 

 
   

  

  
 
 

 
   

   

   
 
  

  
   

  

  
      

  

  
    

 

 
   

  

  
 
 

 
  

   

   
    

 

 
   

  

  
      

 
  

  
 
 

 
  

   

   
       - Eq A.3.8 

 

Now discretise: 
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just like in section 3.1, we take         from the      th time step and    from the  th time 

step: 

  
        

   

  
 
 

 
  

    
         

          
     

   
    

   
   

  
     

   
   

 
    

    
     

     
    

     
     

     
       

   
   

         
      

      
    

    
     

         
          

       

         
    

    

    
    
         

    

   
   

      
    

    
    
       

- Eq 3.4.2 

 


